Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.011
Filtrar
1.
Environ Microbiol ; 26(3): e16608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504412

RESUMO

Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2 . We found that in the absence of CO2 , only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57 Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.


Assuntos
Dióxido de Carbono , Compostos Férricos , Rodopseudomonas , Oxirredução , Ácido Láctico , Compostos Ferrosos , Piruvatos , Acetatos , Glucose
2.
Bioprocess Biosyst Eng ; 47(4): 583-596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491193

RESUMO

In tropical regions, the viability of outdoor photo-fermentative biohydrogen production faces challenges arising from elevated temperatures and varying light intensity. This research aimed to explore how high temperatures and outdoor environments impact both biohydrogen production and the growth of purple non-sulfur bacteria. Our findings revealed the potential of Rhodopseudomonas spp. as a robust outdoor hydrogen-producing bacteria, demonstrating its capacity to thrive and generate biohydrogen even at 40 °C and under fluctuating outdoor conditions. Rhodopseudomonas harwoodiae NM3/1-2 produced the highest cumulative biohydrogen of 223 mL/L under anaerobic light conditions at 40 °C, while Rhodopseudomonas harwoodiae 2M had the highest dry cell weight of 2.93 g/L. However, R. harwoodiae NM3/1-2 demonstrated the highest dry cell weight of 3.99 g/L and Rhodopseudomonas pentothenatexigens KKU-SN1/1 exhibited the highest cumulative biohydrogen production of 400 mL/L when grown outdoors. In addition, the outdoor enhancement of biohydrogen production was achieved through the utilization of a cluster of ten bioreactors system. The outcomes demonstrated a notable improvement in biohydrogen production efficiency, marked by the highest daily biohydrogen production of 493 mL/L d by R. pentothenatexigens KKU-SN1/1. Significantly, the highest biohydrogen production rate was noted to be 17 times greater than that observed in conventional batch production methods. This study is the first to utilize R. pentothenatexigens and R. harwoodiae for sustained biohydrogen production at high temperatures and in outdoor conditions over an extended operational period. The successful utilization of a clustered system of ten bioreactors demonstrates potential to scale-up for industrial biohydrogen production.


Assuntos
Rodopseudomonas , Reatores Biológicos , Fermentação , Hidrogênio
3.
Sci Total Environ ; 926: 171824, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521273

RESUMO

Photosynthetic bacteria (PSB) are suitable to live and remediate cadmium (Cd) in the slightly oxygenated or anaerobic flooding paddy field. However, there is currently limited study on the inhibition of Cd accumulation in rice by PSB, and the relevant mechanisms has yet to be elucidated. In the current study, we firstly used Rhodopseudomonas palustris SC06 (a typical PSB) as research target and combined physiology, biochemistry, microbiome and metabolome to evaluate the mechanisms of remeding Cd pollution in paddy field and inhibiting Cd accumulation in rice. Microbiome analysis results revealed that intensive inoculation with R. palustris SC06 successfully survived and multiplied in flooding paddy soil, and significantly increased the relatively abundance of anaerobic bacteria including Desulfobacterota, Anaerolineaceae, Geobacteraceae, and Gemmatimonadaceae by 46.40 %, 45.00 %, 50.12 %, and 21.30 %, respectively. Simultaneously, the structure of microbial community was regulated to maintain relative stability in the rhizosphere soil of rice under Cd stress. In turn, these bacteria communities reduced bioavailable Cd and enhanced residual Cd in soil, and induced the upregulation of sugar and organic acids in the rice roots, which further inhibited Cd uptake in rice seedlings, and dramatically improved the photosynthetic efficiency in the leaves and the activities of antioxidative enzymes in the roots. Finally, Cd content of the roots, stems, leaves, and grains significantly decreased by 38.14 %, 69.10 %, 83.40 %, and 37.24 % comparing with the control, respectively. This study provides a new strategy for the remediation of Cd-contaminated flooding paddy fields and the safe production of rice.


Assuntos
Oryza , Rodopseudomonas , Poluentes do Solo , Cádmio/análise , Oryza/química , Disponibilidade Biológica , Solo/química , Poluentes do Solo/análise
4.
J Environ Manage ; 356: 120726, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537456

RESUMO

Electrochemical technology is a promising technique for separating ammonia from mature landfill leachate. However, the accompanying migration and transformation of coexisting pollutants and strategies for further high-value resourceful utilization of ammonia have rarely received attention. In this study, an electrochemical separation-Rhodopseudomonas palustris electrolysis cell coupled system was initially constructed for efficient separation and conversion of nitrogen in mature landfill leachate to microbial protein with synchronously tracking the transport and conversion of coexisting heavy metals accompanying the process. The results revealed that ammonia concentration in the cathode increased from 40.3 to 49.8% with increasing the current density from 20 to 40 mA/cm2, with less than 3% of ammonia transformation to NO2--N and NO3--N. During ammonia separation, approximately 95% of HM-DOMs (Cr, Cu, Ni, Pb, and Zn) were released into the anolyte due to humus degradation and further diffused to the cathode. A significant correlation was observed between the releases of HM-DOMs. Cu-DOMs accounted for 70.2% of the total Cu content, which was the highest proportion among the heavy metals (HMs). Among the HMs in anolyte, 57.4% of Pb, 52.5% of Ni, and 50.6% of Zn diffused to the cathode, and most of the HMs were removed in the form of hydroxide precipitations due to heavy alkaline catholyte. Compared with the open-circuit condition, the utilization efficiency of NH4+-N in the R. palustris electrolysis cell increased by 445.1% with 47% and 50% increases in final NH4+-N conversion rate and R. palustris biomass, respectively, due to bio-electrochemical enhanced phototrophic metabolism and acid generation for buffering the strong alkalinity of the electrolyte to maintain suitable growth conditions for R. palustris.


Assuntos
Amônia , Rodopseudomonas , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Chumbo , Eletrólise , Instalações de Eliminação de Resíduos , Nitrogênio
5.
J Environ Manage ; 355: 120350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422846

RESUMO

The difficulty of the microbial conversion process for the degradation of sotol vinasse due to its high acidity and organic load makes it an effluent with high potential for environmental contamination, therefore its treatment is of special interest. Calcium carbonate is found in great abundance and has the ability to act as a neutralizing agent, maintaining the alkalinity of the fermentation medium as well as, through its dissociation, releasing CO2 molecules that can be used by phototrophic CO2-fixing bacteria. This study evaluated the use of Rhodopseudomonas telluris (OR069658) for the degradation of vinasse in different concentrations of calcium carbonate (0, 2, 4, 6, 8 and 10% m/v). The results showed that calcium carbonate concentration influenced volatile fatty acids (VFA), alkalinity and pH, which in turn influenced changes in the degradation of chemical oxygen demand (COD), phenol and sulfate. Maximum COD and phenol degradation values of 83.16 ± 0.15% and 90.16 ± 0.30%, respectively, were obtained at a calcium carbonate concentration of 4%. At the same time, the lowest COD and phenol degradation values of 52.01 ± 0.38% and 68.21 ± 0.81%, respectively, were obtained at a calcium carbonate concentration of 0%. The data obtained also revealed to us that at high calcium carbonate concentrations of 6-10%, sotol vinasse can be biosynthesized by Rhodopseudomonas telluris (OR069658) to VFA, facilitating the degradation of sulfates. The findings of this study confirmed the potential for using Rhodopseudomonas telluris (OR069658) at a calcium carbonate concentration of 4% as an appropriate alternative treatment for sotol vinasse degradation.


Assuntos
Carbono , Rodopseudomonas , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Dióxido de Carbono , Resíduos Industriais/análise , Carbonato de Cálcio , Fenóis , Reatores Biológicos
6.
Appl Environ Microbiol ; 90(2): e0210423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38206012

RESUMO

Halogenated aromatic compounds are used in a variety of industrial applications but can be harmful to humans and animals when released into the environment. Microorganisms that degrade halogenated aromatic compounds anaerobically have been isolated but the evolutionary path that they may have taken to acquire this ability is not well understood. A strain of the purple nonsulfur bacterium, Rhodopseudomonas palustris, RCB100, can use 3-chlorobenzoate (3-CBA) as a carbon source whereas a closely related strain, CGA009, cannot. To reconstruct the evolutionary events that enabled RCB100 to degrade 3-CBA, we isolated an evolved strain derived from CGA009 capable of growing on 3-CBA. Comparative whole-genome sequencing of the evolved strain and RCB100 revealed both strains contained large deletions encompassing badM, a transcriptional repressor of genes for anaerobic benzoate degradation. It was previously shown that in strain RCB100, a single nucleotide change in an alicyclic acid coenzyme A ligase gene, named aliA, gives rise to a variant AliA enzyme that has high activity with 3-CBA. When the RCB100 aliA allele and a deletion in badM were introduced into R. palustris CGA009, the resulting strain grew on 3-CBA at a similar rate as RCB100. This work provides an example of pathway evolution in which regulatory constraints were overcome to enable the selection of a variant of a promiscuous enzyme with enhanced substrate specificity.IMPORTANCEBiodegradation of man-made compounds often involves the activity of promiscuous enzymes whose native substrate is structurally similar to the man-made compound. Based on the enzymes involved, it is possible to predict what microorganisms are likely involved in biodegradation of anthropogenic compounds. However, there are examples of organisms that contain the required enzyme(s) and yet cannot metabolize these compounds. We found that even when the purple nonsulfur bacterium, Rhodopseudomonas palustris, encodes all the enzymes required for degradation of a halogenated aromatic compound, it is unable to metabolize that compound. Using adaptive evolution, we found that a regulatory mutation and a variant of promiscuous enzyme with increased substrate specificity were required. This work provides insight into how an environmental isolate evolved to use a halogenated aromatic compound.


Assuntos
Rodopseudomonas , Humanos , Animais , Anaerobiose , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Biodegradação Ambiental , Mutação
7.
Int J Phytoremediation ; 26(4): 535-545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37668058

RESUMO

In the Mekong Delta Vietnam, rice is heavily affected by Al3+ and Fe2+ ions appearing in local acid sulfate soils (AAS). Therefore, the current study was carried out to assess the efficacy of a liquid biofertilizer (LB) containing nitrogen-fixing and phosphorus-solubilizing bacterial strains of Rhodopseudomonas spp. on remediation of soil characteristics and improvements of rice uptakes, growth, and yield. The experiment was designed in a randomized block design with nine treatments and four replications in an ASS. The results have shown that the LB application could contribute to the remediation of soil properties, including an increase in concentrations of NH4+ by 12.9%-19.4%, soluble P by 25.7%-42.6%, total N uptake by 40.7-64.0 kg ha-1 and total P uptake by 5.60-12.6 kg ha-1, and a decrease in concentrations of toxins, such as Al3+ by 12.1%-19.7% and Fe2+ by 16.6%-19.0%, compared to the treatment with the farmer-based fertilization. Thereby, grain yield was improved by 31.9%-32.2% with the LB versus the treatments without the bacteria and by 9.5%-11.1% compared to the commercial biofertilizer treatments. The application of LB reduced 25% N and 50% P of the recommendation versus the farmers' fertilization and improved performance of rice growth and yield cultivated on ASS which suffered from Al3+ and Fe2+ ions.


The current study has introduced the potential of the Rhodopseudomonas palustris TLS06, VNW02, VNW64, and VNS89 strains in performance as a bioremediator and a biofertilizer. The strains have shown their ability to recover acid sulfate soils, which had damaged the yield of rice plants due to high concentrations of Al3+ and Fe2+ ions. The work has delivered a biological approach to improve acid sulfate soil fertility and rice productivity in Vietnam and in other parts of the world, which have similar conditions, to achieve sustainable agriculture and food security.


Assuntos
Oryza , Rodopseudomonas , Solo , Sulfatos , Biodegradação Ambiental , Fertilizantes/análise , Agricultura/métodos
8.
J Environ Manage ; 351: 119913, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154222

RESUMO

The intimately coupled photocatalysis and biodegradation (ICPB), which combined the advantages of high oxidation capacity of photocatalysis and high mineralization rate of biodegradation, has demonstrated excellent removal performance in the degradation of azo dyes with highly toxic, refractory, mutagenic and carcinogenic. In order to explore the metagenomics mechanism of the ICPB system, a novel ICPB was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA, R-CAT). Metagenomics sequencing was used to investigate the molecular mechanism of adaptation and degradation of dyes by photosynthetic microorganisms and the adaptive and synergistic interaction between photosynthetic microorganisms and photocatalyst. Experiments on the adaptability and degradability of photosynthetic microorganisms have proved that low concentration azo dyes could be utilized as carbon sources for growth of photosynthetic microorganisms. Metagenomics sequencing revealed that R. palustris was the main degrading bacterium in photosynthetic microorganisms and the functional genes related to carbohydrate metabolism, biological regulation and catalytic activity were abundant. It was found that the addition of photocatalyst significantly up-regulated the functional genes related to the catabolic process, electron transport, oxidoreductase activity and superoxide metabolism of organic matter in the photosynthetic microorganisms. Moreover, many key gene such as alpha-amylase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, aldehyde dehydrogenase enrichment in microbial basal metabolism, such as enoyl-CoA hydratase, malate dehydrogenase, glutathione S-transferase enrichment in degrading azo dyes and electron transport, and many key gene such as undecaprenyl-diphosphatase, carbon storage regulator, DNA ligase enrichment in response to dyes and photocatalysts were discovered. These findings would contribute to a comprehensive understanding of the mechanism of degradation of dye wastewater by ICPB system, a series of genes was produced to adapt to environmental changes, and played synergistic role in terms of intermediate product degradation and electron transfer for degrading azo dyes. The photosynthetic microorganisms might be a promising microorganism for constructing ICPB system.


Assuntos
Nanotubos de Carbono , Rodopseudomonas , Águas Residuárias , Prata , Corantes/metabolismo , Titânio , Biodegradação Ambiental , Compostos Azo , Catálise
9.
J Environ Manage ; 345: 118834, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659365

RESUMO

Treating wastewater using purple non-sulfur bacteria (PNSB) is an environmentally friendly technique that can simultaneously remove pollutants and lead to the accumulation of high-value cell inclusions. However, no PNSB system for treating heavy oil refinery wastewater (HORW) and recovering high-value cell inclusions has yet been developed. In this study, five batch PNSB systems dominated by Rhodopseudomonas were used to treat real HORW for 186 d. The effects of using different hydraulic retention times (HRT), sludge retention times (SRT), trace element solutions, phosphate loads, and influent loads were investigated, and the bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were determined. The community structure and quantity of Rhodopseudomonas in the systems were determined using a high-sequencing technique and quantitative polymerase chain reaction technique. The long-term results indicated that phosphate was the limiting factor for treating HORW in the PNSB reactor. The soluble chemical oxygen demand (SCOD) removal rates were 67.03% and 85.26% without and with phosphate added, respectively, and the NH4+-N removal rates were 32.18% and 89.22%, respectively. The NO3--N concentration in the effluent was stable at 0-3 mg/L with or without phosphate added. Adding phosphate increased the Rhodopseudomonas relative abundance and number by 13.21% and 41.61%, respectively, to 57.35% and 8.52 × 106 gene copies/µL, respectively. The SRT was the limiting factor for SCOD removal, and the bacteria concentration was the limiting factor for nitrogen removal. Once the inflow load had been increased, the total nitrogen (TN) removal rate increased as the HRT increased. Maximum TN removal rates of 64.46%, 68.06%, 73.89%, 82.15%, and 89.73% were found at HRT of 7, 10, 13, 16, and 19 d, respectively. The highest bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were 2.92, 4.99, and 4.53 mg/L, respectively. This study provided a simple and efficient method for treating HORW and reutilizing resources, providing theoretical support and parameter guidance for the application of Rhodopseudomonas in treating HORW.


Assuntos
Poluentes Ambientais , Rodopseudomonas , Águas Residuárias , Ubiquinona , Bacterioclorofilas , Esgotos , Carotenoides , Nitrogênio , Indústria de Petróleo e Gás , Fosfatos
10.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762380

RESUMO

Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.


Assuntos
Arabidopsis , Rodopseudomonas , Humanos , Cofator PQQ , Transtornos do Crescimento , Fósforo
11.
PLoS Comput Biol ; 19(8): e1011371, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556472

RESUMO

The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.


Assuntos
Rodopseudomonas , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Benzoatos/metabolismo , Fotossíntese/genética
12.
J Hazard Mater ; 458: 131937, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421856

RESUMO

Cadmium (Cd) pollution is regarded as a potent problem due to its hazard risks to the environment, making it crucial to be removed. Compared to the physicochemical techniques (e.g., adsorption, ion exchange, etc.), bioremediation is a promising alternative technology for Cd removal, due to its cost-effectiveness, and eco-friendliness. Among them, microbial-induced cadmium sulfide mineralization (Bio-CdS NPs) is a process of great significance for environmental protection. In this study, microbial cysteine desulfhydrase coupled with cysteine acted as a strategy for Bio-CdS NPs by Rhodopseudomonas palustris. The synthesis, activity, and stability of Bio-CdS NPs-R. palustris hybrid was explored under different light conditions. Results show that low light (LL) intensity could promote cysteine desulfhydrase activities to accelerate hybrid synthesis, and facilitated bacterial growth by the photo-induced electrons of Bio-CdS NPs. Additionally, the enhanced cysteine desulfhydrase activity effectively alleviated high Cd-stress. However, the hybrid rapidly dissolved under changed environmental factors, including light intensity and oxygen. The factors affecting the dissolution were ranked as follows: darkness/microaerobic ≈ darkness/aerobic < LL/microaerobic < high light (HL)/microaerobic < LL/aerobic < HL/aerobic. The research provides a deeper understanding of Bio-CdS NPs-bacteria hybird synthesis and its stability in Cd-polluted water, allowing advanced bioremediation treatment of heavy metal pollution in water.


Assuntos
Nanopartículas , Rodopseudomonas , Cádmio , Cistationina gama-Liase/metabolismo , Biomineralização , Rodopseudomonas/metabolismo , Sulfetos , Água
13.
Appl Environ Microbiol ; 89(6): e0048723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37272846

RESUMO

The phyllosphere presents a hostile environment for many biocontrol agents; however, it is as significant as is the rhizosphere for plant health. Deploying biocontrol bacteria into the phyllosphere can efficiently suppress diseases; however, the lack of knowledge on the phyllosphere adaptive traits of biocontrol bacteria poses challenges. In this study, we demonstrated that Rhodopseudomonas palustris GJ-22 colonizes the phyllosphere by forming cell aggregates. The formation of cell aggregates required the production of exopolysaccharides (EPS), which depended on the function of the rpaI-rpaR quorum sensing (QS) mechanism, mediated by the signaling molecule p-coumaroyl-HSL (pC-HSL). The mutation of the EPS biosynthesis gene Exop1 or the signaling molecule biosynthesis gene rpaI compromised the ability of GJ-22 to tolerate reactive oxygen intermediates (ROIs), such as H2O2, in vitro and to form cell aggregates in vivo. Collectively, the results revealed that QS mediates EPS production and consequently leads to bacterial cell aggregation. IMPORTANCE Quorum sensing is used by various bacteria for coordinating the multiplication of bacterial cells in a group and for modulating the behaviors of surrounding microbial species. Host plants can benefit from this interspecies modulation, as it can disrupt the QS circuits of pathogenic bacteria. Some N-acyl homoserine lactone- (AHL-) producing bacteria that were introduced into the phyllosphere as biocontrol agents may establish AHL-based crosstalk with indigenous microbes to steer the nutritional and microecological conditions toward their own and the host plant's benefit. Here, we showed that biocontrol bacteria introduced into the phyllosphere require a functioning QS circuit to establish colonies and suppress pathogens. Furthermore, our findings provoked a broader investigation into the role of the QS circuit in beneficial microorganism-plant interactions.


Assuntos
Percepção de Quorum , Rodopseudomonas , Percepção de Quorum/genética , Peróxido de Hidrogênio , Rodopseudomonas/genética , Transdução de Sinais , Acil-Butirolactonas
14.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375288

RESUMO

Rhodopseudomonas palustris is an alphaproteobacterium with impressive metabolic versatility, capable of oxidizing ferrous iron to fix carbon dioxide using light energy. Photoferrotrophic iron oxidation is one of the most ancient metabolisms, sustained by the pio operon coding for three proteins: PioB and PioA, which form an outer-membrane porin-cytochrome complex that oxidizes iron outside of the cell and transfers the electrons to the periplasmic high potential iron-sulfur protein (HIPIP) PioC, which delivers them to the light-harvesting reaction center (LH-RC). Previous studies have shown that PioA deletion is the most detrimental for iron oxidation, while, the deletion of PioC resulted in only a partial loss. The expression of another periplasmic HiPIP, designated Rpal_4085, is strongly upregulated in photoferrotrophic conditions, making it a strong candidate for a PioC substitute. However, it is unable to reduce the LH-RC. In this work we used NMR spectroscopy to map the interactions between PioC, PioA, and the LH-RC, identifying the key amino acid residues involved. We also observed that PioA directly reduces the LH-RC, and this is the most likely substitute upon PioC deletion. By contrast, Rpal_4085 demontrated significant electronic and structural differences from PioC. These differences likely explain its inability to reduce the LH-RC and highlight its distinct functional role. Overall, this work reveals the functional resilience of the pio operon pathway and further highlights the use of paramagnetic NMR for understanding key biological processes.


Assuntos
Ferro , Rodopseudomonas , Ferro/metabolismo , Oxirredução , Rodopseudomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
15.
Bioprocess Biosyst Eng ; 46(6): 913-919, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36973588

RESUMO

Photofermentative hydrogen production has gained increasing attention as a source of green energy. To make such photofermentation processes economically competitive, operating costs need to be reduced, possibly through outdoor operation. Because photofermentation processes are light dependent, the emission spectrum and intensity of light both have a significant influence on the hydrogen production and merit investigation. This study investigates the effect of light sources on the hydrogen production and growth of Rhodopseudomonas palustris, comparing the organism's productivity under longer-wavelength light and light mimicking sunlight. Hydrogen production is enhanced under longer-wavelength light, producing 26.8% (± 7.3%) more hydrogen as compared to under light mimicking that of sunlight; however, R. palustris is still able to produce a considerable volume of hydrogen under light with a spectrum mimicking that of sunlight, providing a promising avenue for future research.


Assuntos
Luz , Rodopseudomonas , Hidrogênio
16.
mBio ; 14(2): e0360922, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786592

RESUMO

How bacteria transition into growth arrest as part of stationary phase has been well-studied, but our knowledge of features that help cells to stay alive in the following days and weeks is incomplete. Most studies have used heterotrophic bacteria that are growth-arrested by depletion of substrates used for both biosynthesis and energy generation, making is difficult to disentangle the effects of the two. In contrast, when grown anaerobically in light, the phototrophic bacterium Rhodopseudomonas palustris generates ATP from light via cyclic photophosphorylation, and builds biomolecules from organic substrates, such as acetate. As such, energy generation and carbon utilization are independent from one another. Here, we compared the physiological and molecular responses of R. palustris to growth arrest caused by carbon source depletion in light (energy-replete) and dark (energy-depleted) conditions. Both sets of cells remained viable for 6 to 10 days, at which point dark-incubated cells lost viability, whereas light-incubated cells remained fully viable for 60 days. Dark-incubated cells were depleted in intracellular ATP prior to losing viability, suggesting that ATP depletion is a cause of cell death. Dark-incubated cells also shut down measurable protein synthesis, whereas light-incubated cells continued to synthesize proteins at low levels. Cells incubated in both conditions continued to transcribe genes. We suggest that R. palustris may completely shut down protein synthesis in dark, energy-depleted, conditions as a strategy to survive the nighttime hours of day/night cycles it experiences in nature, where there is a predictable source of energy in the form of sunlight only during the day. IMPORTANCE The molecular and physiological basis of bacterial longevity in growth arrest is important to investigate for several reasons. Such investigations could improve treatment of chronic infections, advance use of non-growing bacteria as biocatalysts to make high yields of value-added products, and improve estimates of microbial activities in natural habitats, where cells are often growing slowly or not at all. Here, we compared survival of the phototrophic bacterium Rhodopseudomonas palustris under conditions where it generates ATP (incubation in light), and where it does not generate ATP (incubation in dark) to directly assess effects of energy depletion on long-term viability. We found that ATP is important for long-term survival over weeks. However, R. palustris survives 12 h periods of ATP depletion without loss of viability, apparently in anticipation of sunrise and restoration of its ability to generate ATP. Our work suggests that cells respond to ATP depletion by shutting down protein synthesis.


Assuntos
Longevidade , Rodopseudomonas , Rodopseudomonas/metabolismo , Carbono/metabolismo , Trifosfato de Adenosina/metabolismo
17.
Microb Biotechnol ; 16(3): 569-578, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537073

RESUMO

Purple phototrophic bacteria are one of the main actors in chemolithotrophic carbon fixation and, therefore, fundamental in the biogeochemical cycle. These microbes are capable of using insoluble electron donors such as ferrous minerals or even carbon-based electrodes. Carbon fixation through extracellular electron uptake places purple phototrophic bacteria in the field of microbial electrosynthesis as key carbon capturing microorganisms. In this work we demonstrate biomass production dominated by purple phototrophic bacteria with a cathode (-0.6 V vs. Ag/AgCl) as electron donor. In addition, we compared the growth and microbial population structure with ferrous iron as the electron donor. We detect interaction between the cathode and the consortium showing a midpoint potential of 0.05 V (vs. Ag/AgCl). Microbial community analyses revealed different microbial communities depending on the electron donor, indicating different metabolic interactions. Electrochemical measurements together with population analyses point to Rhodopseudomonas genus as the key genus in the extracellular electron uptake. Furthermore, the genera Azospira and Azospirillum could play a role in the photoelectrotrophic consortium.


Assuntos
Rodopseudomonas , Biomassa , Ferro/metabolismo , Eletricidade , Carbono/metabolismo , Eletrodos
18.
Appl Biochem Biotechnol ; 195(3): 1800-1822, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36399303

RESUMO

The purpose of this study is to present an effective form of developing a sequential dark (DF) and photo (PF) fermentation using volatile fatty acids (VFAs) and nitrogen compounds as bonding components between both metabolic networks of microbial growing in each fermentation. A simultaneous (co-)culture of Syntrophomonas wolfei (with its ability to consume butyrate and produce acetate) and Rhodopseudomonas palustris (that can use the produced acetate as a carbon source) performed a syntrophic metabolism. The former bacteria consumed the acetate/butyrate mixture reducing the butyrate concentration below 2.0 g/L, permitting Rhodopseudomonas palustris to produce hydrogen. Considering that the inoculum composition (Syntrophomonas wolfei/Rhodopseudomonas palustris) and the nitrogen source (yeast extract) define the microbial biomass specific productivity and the butyrate consumption, a response surface methodology defined the best inoculum design and yeast extract (YE) yielding to the highest biomass concentration of 1.1 g/L after 380.00 h. A second culture process (without a nitrogen source) showed the biomass produced in the previous culture process yields to produce a total cumulated hydrogen concentration of 3.4 mmol. This value was not obtained previously with the pure strain Rhodopseudomonas palustris if the culture medium contained butyrate concentration above 2.0 g/L, representing a contribution to the sequential fermentation scheme based on DF and PF.


Assuntos
Butiratos , Rodopseudomonas , Técnicas de Cocultura , Acetatos , Nitrogênio/metabolismo , Hidrogênio/metabolismo
19.
J Biol Chem ; 299(1): 102782, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502920

RESUMO

Lactones are prevalent in biological and industrial settings, yet there is a lack of information regarding enzymes used to metabolize these compounds. One compound, γ-valerolactone (GVL), is used as a solvent to dissolve plant cell walls into sugars and aromatic molecules for subsequent microbial conversion to fuels and chemicals. Despite the promise of GVL as a renewable solvent for biomass deconstruction, residual GVL can be toxic to microbial fermentation. Here, we identified a Ca2+-dependent enzyme from Rhodopseudomonas palustris (Rpa3624) and showed that it can hydrolyze aliphatic and aromatic lactones and esters, including GVL. Maximum-likelihood phylogenetic analysis of other related lactonases with experimentally determined substrate preferences shows that Rpa3624 separates by sequence motifs into a subclade with preference for hydrophobic substrates. Additionally, we solved crystal structures of this ß-propeller enzyme separately with either phosphate, an inhibitor, or a mixture of GVL and products to define an active site where calcium-bound water and calcium-bound aspartic and glutamic acid residues make close contact with substrate and product. Our kinetic characterization of WT and mutant enzymes combined with structural insights inform a reaction mechanism that centers around activation of a calcium-bound water molecule promoted by general base catalysis and close contacts with substrate and a potential intermediate. Similarity of Rpa3624 with other ß-propeller lactonases suggests this mechanism may be relevant for other members of this emerging class of versatile catalysts.


Assuntos
Lactonas , Rodopseudomonas , Cálcio , Catálise , Lactonas/química , Filogenia , Solventes/química , Especificidade por Substrato , Água/química
20.
BMC Microbiol ; 22(1): 297, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494611

RESUMO

The genus Rhodopseudomonas comprises purple non-sulfur bacteria with extremely versatile metabolisms. Characterization of several strains revealed that each is a distinct ecotype highly adapted to its specific micro-habitat. Here we present the sequencing, genomic comparison and functional annotation of AZUL, a Rhodopseudomonas strain isolated from a high altitude Andean lagoon dominated by extreme conditions and fluctuating levels of chemicals. Average nucleotide identity (ANI) analysis of 39 strains of this genus showed that the genome of AZUL is 96.2% identical to that of strain AAP120, which suggests that they belong to the same species. ANI values also show clear separation at the species level with the rest of the strains, being more closely related to R. palustris. Pangenomic analyses revealed that the genus Rhodopseudomonas has an open pangenome and that its core genome represents roughly 5 to 12% of the total gene repertoire of the genus. Functional annotation showed that AZUL has genes that participate in conferring genome plasticity and that, in addition to sharing the basal metabolic complexity of the genus, it is also specialized in metal and multidrug resistance and in responding to nutrient limitation. Our results also indicate that AZUL might have evolved to use some of the mechanisms involved in resistance as redox reactions for bioenergetic purposes. Most of those features are shared with strain AAP120, and mainly involve the presence of additional orthologs responsible for the mentioned processes. Altogether, our results suggest that AZUL, one of the few bacteria from its habitat with a sequenced genome, is highly adapted to the extreme and changing conditions that constitute its niche.


Assuntos
Rodopseudomonas , Rodopseudomonas/genética , Adaptação Fisiológica/genética , Sequência de Bases , Genômica , Aclimatação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...